Vellum is coming to the AI Engineering World's Fair in SF. Come visit our booth and get a live demo!

Introducing Vellum Search

Vellum Search, the latest addition to our platform helps companies use proprietary data in LLM applications

Written by
Reviewed by
No items found.

TLDR: We’re launching Vellum Search, a document retrieval system to enable LLMs to use your company specific data in production. Companies take weeks to build this infrastructure today because of token window limitation from model providers. Search is tightly integrated with the rest of our platform, comes with smart defaults, but also supports maximal configuration at each step of the process.

This is an exciting announcement! Since we first announced Vellum, we've had the opportunity to work with 1000s of people using LLMs in production. The concepts we shared in our original blog still resonate with most people but, over time, we realized that our users face a whole different problem before they can even consider using LLMs: information retrieval of company specific data. Based on this feedback we're launching a new part of our platform: Vellum Search. This post shares more about Vellum Search, please reach out if this resonates with you!

When your LLM use-case requires factually accurate responses based on a proprietary corpus of text (i.e. company-specific information usually not present in foundation models), it’s best-practice to set up a pipeline that

  1. Ingests each “document” from your knowledge base
  2. Split each document into smaller chunks
  3. Run each chunk through an embedding model
  4. Store the resulting embeddings in a vector database (like Pinecone or Weaviate); then finally
  5. Given a user-submitted query, perform a hybrid-search at run-time and include the results in your LLM prompt so that it can synthesize an answer

You can either spend days-to-weeks setting up a naïve implementation of this infrastructure yourself OR use Vellum’s managed Search product, which takes just a few minutes to set up,  instills best-practices at each step along the way, and is tightly integrated with the rest of our AI developer tools. Here’s a comment from our Hacker News launch which summarizes the commons pains of going with the DIY approach:

Why Search is a Critical Piece of the LLM Stack

When LLMs need to answer questions factually, without hallucinations, it’s best to provide them the relevant context in the prompt and instruct them to answer just from this context. Easy enough, except the challenge comes when the corpus of text is larger than the token limit of the model. OpenAI is launching a 32k token window (50 pages) version of GPT-4 soon, but filling out those 32k tokens will cost a hefty $1.92 per request 😅 (not to mention, the more tokens you include, the slower the request!).

The solution here is document retrieval via embeddings. Embedding models allow for retrieval based on semantic similarity, which enables the inclusion of only the most relevant chunks of a document into the prompt at run time. This opens up a large number of potential LLM use-cases — here are just a few examples of how our Search product has helped customers in production already:

  • Support chatbot to answer product questions for a cosmetic brand based on detailed product documentation
  • Internal chatbot to questions based on legal documents with citations to specific cases
  • Agent assist for support agents at hotel chains to answer guest questions (e.g., where is the fitness center? what time is checkout? can you make this reservation for me?)
  • Sales / customer support reps at an insurance company can ask a chatbot about coverage-related questions instead of making a ticket for internal underwriters

Introducing Vellum Search

LLM use-cases that require document retrieval can be set up within 10 minutes when using Vellum Search, Playground and Manage. Vellum offers tried-and-true defaults to get started quickly, but also exposes advanced configuration for those that want to get in the weeds and experiment. Here’s a step by step guide of how it works:

Step 1 (1 minute): Create a document index (collection of documents which will be queried together at run-time), upload documents either through our API endpoint or our UI.

Step 2 (2 minutes): Once the documents are indexed using your chosen embedding model and chunking strategy, they are stored in a vector database and can be queried through our search API. Choose the number of chunks you want returned.

Step 3 (5 minutes): Go to Vellum Playground, start with our predefined prompt templates, do some prompt engineering, add the relevant chunks to your test cases and confirm the LLM is providing reasonable results.

You can see an interactive walkthrough of these steps here

Why use Vellum for Document Retrieval?

Our philosophy for document retrieval is to abstract away complex infrastructure, provide smart defaults, and support maximal configuration at each step of the process.

We’ve seen hundreds of people sweat the details on which embedding models to try, what chunking strategy to use, what vector db to implement etc. Some of these questions matter a lot (choice of embedding model), others less so (choice of vector db). Even learning what decisions you should be making can be burdensome!

At the end of the day, document retrieval is just another (albeit critical!) piece of the Al tech stack. With Vellum, document retrieval is tightly integrated into the rest of our AI developer platform so that you can quickly see the holistic impact of how changes to your search + prompt  effect your end-user experience.

Our goal is to provide product builders with the tooling needed to create great AI applications in production and Search is a big step towards delivering on that mission!

Our asks

  1. If you’re interested in using Vellum for any of your LLM use-cases, please reach out to me at akash@vellum.ai or request early access here
  2. Subscribe to our and stay tuned for updates from us. We will soon share more technical content about how we created our Search product (e.g., what chunking strategies we tested and built).

ABOUT THE AUTHOR
Noa Flaherty
Co-founder & CTO

Noa Flaherty, CTO and co-founder at Vellum (YC W23) is helping developers to develop, deploy and evaluate LLM-powered apps. His diverse background in mechanical and software engineering, as well as marketing and business operations gives him the technical know-how and business acumen needed to bring value to nearly any aspect of startup life. Prior to founding Vellum, Noa completed his undergrad at MIT and worked at three tech startups, including roles in MLOps at DataRobot and Product Engineering at Dover.

ABOUT THE reviewer

No items found.
lAST UPDATED
Apr 12, 2023
share post
Expert verified
Related Posts
Guides
October 21, 2025
15 min
AI transformation playbook
LLM basics
October 20, 2025
8 min
The Top Enterprise AI Automation Platforms (Guide)
LLM basics
October 10, 2025
7 min
The Best AI Workflow Builders for Automating Business Processes
LLM basics
October 7, 2025
8 min
The Complete Guide to No‑Code AI Workflow Automation Tools
All
October 6, 2025
6 min
OpenAI's Agent Builder Explained
Product Updates
October 1, 2025
7
Vellum Product Update | September
The Best AI Tips — Direct To Your Inbox

Latest AI news, tips, and techniques

Specific tips for Your AI use cases

No spam

Oops! Something went wrong while submitting the form.

Each issue is packed with valuable resources, tools, and insights that help us stay ahead in AI development. We've discovered strategies and frameworks that boosted our efficiency by 30%, making it a must-read for anyone in the field.

Marina Trajkovska
Head of Engineering

This is just a great newsletter. The content is so helpful, even when I’m busy I read them.

Jeremy Hicks
Solutions Architect

Experiment, Evaluate, Deploy, Repeat.

AI development doesn’t end once you've defined your system. Learn how Vellum helps you manage the entire AI development lifecycle.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Build AI agents in minutes with Vellum
Build agents that take on the busywork and free up hundreds of hours. No coding needed, just start creating.

General CTA component, Use {{general-cta}}

Build AI agents in minutes with Vellum
Build agents that take on the busywork and free up hundreds of hours. No coding needed, just start creating.

General CTA component  [For enterprise], Use {{general-cta-enterprise}}

The best AI agent platform for enterprises
Production-grade rigor in one platform: prompt builder, agent sandbox, and built-in evals and monitoring so your whole org can go AI native.

[Dynamic] Ebook CTA component using the Ebook CMS filtered by name of ebook.
Use {{ebook-cta}} and add a Ebook reference in the article

Thank you!
Your submission has been received!
Oops! Something went wrong while submitting the form.
Button Text

LLM leaderboard CTA component. Use {{llm-cta}}

Check our LLM leaderboard
Compare all open-source and proprietary model across different tasks like coding, math, reasoning and others.

Case study CTA component (ROI)

40% cost reduction on AI investment
Learn how Drata’s team uses Vellum and moves fast with AI initiatives, without sacrificing accuracy and security.

Case study CTA component (cutting eng overhead) = {{coursemojo-cta}}

6+ months on engineering time saved
Learn how CourseMojo uses Vellum to enable their domain experts to collaborate on AI initiatives, reaching 10x of business growth without expanding the engineering team.

Case study CTA component (Time to value) = {{time-cta}}

100x faster time to deployment for AI agents
See how RelyHealth uses Vellum to deliver hundreds of custom healthcare agents with the speed customers expect and the reliability healthcare demands.

[Dynamic] Guide CTA component using Blog Post CMS, filtering on Guides’ names

100x faster time to deployment for AI agents
See how RelyHealth uses Vellum to deliver hundreds of custom healthcare agents with the speed customers expect and the reliability healthcare demands.
New CTA
Sorts the trigger and email categories

Dynamic template box for healthcare, Use {{healthcare}}

Start with some of these healthcare examples

Prior authorization navigator
Automate the prior authorization process for medical claims.
Population health insights reporter
Combine healthcare sources and structure data for population health management.

Dynamic template box for insurance, Use {{insurance}}

Start with some of these insurance examples

AI agent for claims review
Review healthcare claims, detect anomalies and benchmark pricing.
Agent that summarizes lengthy reports (PDF -> Summary)
Summarize all kinds of PDFs into easily digestible summaries.
Insurance claims automation agent
Collect and analyze claim information, assess risk and verify policy details.

Dynamic template box for eCommerce, Use {{ecommerce}}

Start with some of these eCommerce examples

E-commerce shopping agent
Check order status, manage shopping carts and process returns.

Dynamic template box for Marketing, Use {{marketing}}

Start with some of these marketing examples

ReAct agent for web search and page scraping
Gather information from the internet and provide responses with embedded citations.
Competitor research agent
Scrape relevant case studies from competitors and extract ICP details.

Dynamic template box for Sales, Use {{sales}}

Start with some of these sales examples

Research agent for sales demos
Company research based on Linkedin and public data as a prep for sales demo.

Dynamic template box for Legal, Use {{legal}}

Start with some of these legal examples

AI legal research agent
Comprehensive legal research memo based on research question, jurisdiction and date range.
PDF Data Extraction to CSV
Extract unstructured data (PDF) into a structured format (CSV).

Dynamic template box for Supply Chain/Logistics, Use {{supply}}

Start with some of these supply chain examples

Risk assessment agent for supply chain operations
Comprehensive risk assessment for suppliers based on various data inputs.

Dynamic template box for Edtech, Use {{edtech}}

Start with some of these edtech examples

Turn LinkedIn Posts into Articles and Push to Notion
Convert your best Linkedin posts into long form content.

Dynamic template box for Compliance, Use {{compliance}}

Start with some of these compliance examples

No items found.

Dynamic template box for Customer Support, Use {{customer}}

Start with some of these customer support examples

Trust Center RAG Chatbot
Read from a vector database, and instantly answer questions about your security policies.
Q&A RAG Chatbot with Cohere reranking

Template box, 2 random templates, Use {{templates}}

Start with some of these agents

LinkedIn Content Planning Agent
Create a 30-day Linkedin content plan based on your goals and target audience.
Review Comment Generator for GitHub PRs
Generate a code review comment for a GitHub pull request.

Template box, 6 random templates, Use {{templates-plus}}

Build AI agents in minutes

Clinical trial matchmaker
Match patients to relevant clinical trials based on EHR.
Legal RAG chatbot
Chatbot that provides answers based on user queries and legal documents.
LinkedIn Content Planning Agent
Create a 30-day Linkedin content plan based on your goals and target audience.
SOAP Note Generation Agent
Extract subjective and objective info, assess and output a treatment plan.
Retail pricing optimizer agent
Analyze product data and market conditions and recommend pricing strategies.
Research agent for sales demos
Company research based on Linkedin and public data as a prep for sales demo.

Build AI agents in minutes for

{{industry_name}}

Clinical trial matchmaker
Match patients to relevant clinical trials based on EHR.
Prior authorization navigator
Automate the prior authorization process for medical claims.
Population health insights reporter
Combine healthcare sources and structure data for population health management.
Legal document processing agent
Process long and complex legal documents and generate legal research memorandum.
Legal contract review AI agent
Asses legal contracts and check for required classes, asses risk and generate report.
Legal RAG chatbot
Chatbot that provides answers based on user queries and legal documents.

Case study results overview (usually added at top of case study)

What we did:

1-click

This is some text inside of a div block.

28,000+

Separate vector databases managed per tenant.

100+

Real-world eval tests run before every release.