Vellum is coming to the AI Engineering World's Fair in SF. Come visit our booth and get a live demo!

Introducing Vellum Test Suites

Use Vellum Test Suites to test the quality of prompts in bulk before production. Unit testing for LLMs is here!

Written by
Reviewed by
No items found.

TLDR: Unit testing for LLMs is here! Vellum Test Suites allows you to test the quality of Large Language Models (LLMs) before sending them to production. You can upload test cases via CSV or API, quickly identify the best prompts for your use case (via exact match, regex, semantic similarity and bespoke business logic through webhooks) and the specific test cases that fail evaluation. Gain confidence before sending prompts to production!

Evaluating the quality of large language models is difficult and one of the big reasons that prevent people from putting LLMs to production. For instance, do you ever wonder how you can take this amazing demo you created on OpenAI’s playground and reliably put it in production? Maybe you’re worried about the unpredictable responses the model might provide when faced with real user data? The practical solution here is unit testing, if the prompt/model can “pass” a large number of test cases, that should give you more comfort before putting it in production.

However, the two main challenges companies face here are:

  1. It’s difficult to measure the quality of LLM output; and
  2. Building the infrastructure for robust LLM unit testing is time consuming

That’s where Vellum Test Suites come in. Once you have a prompt/model combination that seems to provide generally good results with a few test cases you can upload tens or hundreds of test cases to see where your prompt shines and where it falls short. The prompt can then be further tweaked to clear the test cases that failed. We’ve had customers conduct extensive testing using our Test Suites to confirm the prompts look good before they are sent to production.

Why is it difficult to test LLM quality in bulk?

There’s no framework to evaluate quality of Large Language models. LLMs are inherently probabilistic in nature — the same input can have different outputs depending on the probabilities assigned by the model when using a temperature of > 0, and seemingly small changes can result in vastly different outputs. We wrote a blog about this topic a few weeks ago, but in summary, the evaluation approach depends on type of use case

  • Classification: accuracy, recall, precision, F score and confusion matrices for a deeper evaluation
  • Data extraction: Validate that the output is syntactically valid and the expected keys are present in the generated response
  • SQL/Code generation: Validate that the output is syntactically valid and running it will return the expected values
  • Creative output: Semantic similarity between model generated response and target response using cross-encoders

Each of these evaluation methods today is done either by eyeballing the results, in Jupyter notebooks or by writing custom code.

Even after setting up the tooling needed for an evaluation metric, it’s still a non-trivial task to test hundreds of test cases in bulk and measure which cases fail. Results have to be stored in an Excel spreadsheet, you might come up against OpenAI rate limits and it’s not clear which cases fail the evaluation criteria.

Introducing Vellum Test Suites

With Vellum Test Suites, you can choose your evaluation metric, specify values for input variables and target outputs, and run your prompts through all those test cases within minutes. All this is done in our UI or API, no custom code needed. From there, you can quickly identify which test cases are failing. The evaluation metrics we support today are:

  • Exact match: Best used for classification tasks
  • Regex match: Best used for data extraction
  • Webhook support: Best used when you have some bespoke business logic that’s capable of determining whether an LLM’s output is “good” or “bad”
  • Semantic similarity: Best used for creative output

Here’s a guide to how Test Suites work:

Step 1: Create a test suite, this is a bank of test cases that will be sent to the prompt for evaluation. Remember to use the same variables as you have in your prompt!

Step 2: Add test cases with target responses either in our UI, upload via CSV, or via an API endpoint. These test cases should be representative of the types of inputs your LLM application is expected to see in production.

Step 3: Go to Vellum Playground, run the test suite and quickly identify which test cases are failing

Now that you know which test cases fail for your prompt(s), you can continue tweaking the prompt until you get a better result! Once ready, deploy your prompt through Vellum to get all the benefits of our Manage product.

What’s next?

We’re excited to continue building tools that help companies evaluate the quality of their models and prompts. We’ve seen promising early signs of using one prompt to evaluate the output quality of other prompts and hope to productize some of this soon!

Our asks

  1. If you’re interested in using Vellum for any of your LLM use-cases, please sign up here
  2. Subscribe to our blog and stay tuned for updates from us. We will soon share more updates to our testing and evaluation suite soon
  3. Please share your experience in creating production use cases of LLMs in the comments below. We would love to learn more!
ABOUT THE AUTHOR
Noa Flaherty
Co-founder & CTO

Noa Flaherty, CTO and co-founder at Vellum (YC W23) is helping developers to develop, deploy and evaluate LLM-powered apps. His diverse background in mechanical and software engineering, as well as marketing and business operations gives him the technical know-how and business acumen needed to bring value to nearly any aspect of startup life. Prior to founding Vellum, Noa completed his undergrad at MIT and worked at three tech startups, including roles in MLOps at DataRobot and Product Engineering at Dover.

ABOUT THE reviewer

No items found.
lAST UPDATED
May 17, 2023
share post
Expert verified
Related Posts
Guides
October 21, 2025
15 min
AI transformation playbook
LLM basics
October 20, 2025
8 min
The Top Enterprise AI Automation Platforms (Guide)
LLM basics
October 10, 2025
7 min
The Best AI Workflow Builders for Automating Business Processes
LLM basics
October 7, 2025
8 min
The Complete Guide to No‑Code AI Workflow Automation Tools
All
October 6, 2025
6 min
OpenAI's Agent Builder Explained
Product Updates
October 1, 2025
7
Vellum Product Update | September
The Best AI Tips — Direct To Your Inbox

Latest AI news, tips, and techniques

Specific tips for Your AI use cases

No spam

Oops! Something went wrong while submitting the form.

Each issue is packed with valuable resources, tools, and insights that help us stay ahead in AI development. We've discovered strategies and frameworks that boosted our efficiency by 30%, making it a must-read for anyone in the field.

Marina Trajkovska
Head of Engineering

This is just a great newsletter. The content is so helpful, even when I’m busy I read them.

Jeremy Hicks
Solutions Architect

Experiment, Evaluate, Deploy, Repeat.

AI development doesn’t end once you've defined your system. Learn how Vellum helps you manage the entire AI development lifecycle.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Build AI agents in minutes with Vellum
Build agents that take on the busywork and free up hundreds of hours. No coding needed, just start creating.

General CTA component, Use {{general-cta}}

Build AI agents in minutes with Vellum
Build agents that take on the busywork and free up hundreds of hours. No coding needed, just start creating.

General CTA component  [For enterprise], Use {{general-cta-enterprise}}

The best AI agent platform for enterprises
Production-grade rigor in one platform: prompt builder, agent sandbox, and built-in evals and monitoring so your whole org can go AI native.

[Dynamic] Ebook CTA component using the Ebook CMS filtered by name of ebook.
Use {{ebook-cta}} and add a Ebook reference in the article

Thank you!
Your submission has been received!
Oops! Something went wrong while submitting the form.
Button Text

LLM leaderboard CTA component. Use {{llm-cta}}

Check our LLM leaderboard
Compare all open-source and proprietary model across different tasks like coding, math, reasoning and others.

Case study CTA component (ROI)

40% cost reduction on AI investment
Learn how Drata’s team uses Vellum and moves fast with AI initiatives, without sacrificing accuracy and security.

Case study CTA component (cutting eng overhead) = {{coursemojo-cta}}

6+ months on engineering time saved
Learn how CourseMojo uses Vellum to enable their domain experts to collaborate on AI initiatives, reaching 10x of business growth without expanding the engineering team.

Case study CTA component (Time to value) = {{time-cta}}

100x faster time to deployment for AI agents
See how RelyHealth uses Vellum to deliver hundreds of custom healthcare agents with the speed customers expect and the reliability healthcare demands.

[Dynamic] Guide CTA component using Blog Post CMS, filtering on Guides’ names

100x faster time to deployment for AI agents
See how RelyHealth uses Vellum to deliver hundreds of custom healthcare agents with the speed customers expect and the reliability healthcare demands.
New CTA
Sorts the trigger and email categories

Dynamic template box for healthcare, Use {{healthcare}}

Start with some of these healthcare examples

Prior authorization navigator
Automate the prior authorization process for medical claims.
Clinical trial matchmaker
Match patients to relevant clinical trials based on EHR.

Dynamic template box for insurance, Use {{insurance}}

Start with some of these insurance examples

Insurance claims automation agent
Collect and analyze claim information, assess risk and verify policy details.
AI agent for claims review
Review healthcare claims, detect anomalies and benchmark pricing.
Agent that summarizes lengthy reports (PDF -> Summary)
Summarize all kinds of PDFs into easily digestible summaries.

Dynamic template box for eCommerce, Use {{ecommerce}}

Start with some of these eCommerce examples

E-commerce shopping agent
Check order status, manage shopping carts and process returns.

Dynamic template box for Marketing, Use {{marketing}}

Start with some of these marketing examples

LinkedIn Content Planning Agent
Create a 30-day Linkedin content plan based on your goals and target audience.
ReAct agent for web search and page scraping
Gather information from the internet and provide responses with embedded citations.

Dynamic template box for Sales, Use {{sales}}

Start with some of these sales examples

Research agent for sales demos
Company research based on Linkedin and public data as a prep for sales demo.

Dynamic template box for Legal, Use {{legal}}

Start with some of these legal examples

AI legal research agent
Comprehensive legal research memo based on research question, jurisdiction and date range.
Legal contract review AI agent
Asses legal contracts and check for required classes, asses risk and generate report.

Dynamic template box for Supply Chain/Logistics, Use {{supply}}

Start with some of these supply chain examples

Risk assessment agent for supply chain operations
Comprehensive risk assessment for suppliers based on various data inputs.

Dynamic template box for Edtech, Use {{edtech}}

Start with some of these edtech examples

Turn LinkedIn Posts into Articles and Push to Notion
Convert your best Linkedin posts into long form content.

Dynamic template box for Compliance, Use {{compliance}}

Start with some of these compliance examples

No items found.

Dynamic template box for Customer Support, Use {{customer}}

Start with some of these customer support examples

Trust Center RAG Chatbot
Read from a vector database, and instantly answer questions about your security policies.
Q&A RAG Chatbot with Cohere reranking

Template box, 2 random templates, Use {{templates}}

Start with some of these agents

SOAP Note Generation Agent
Extract subjective and objective info, assess and output a treatment plan.
Research agent for sales demos
Company research based on Linkedin and public data as a prep for sales demo.

Template box, 6 random templates, Use {{templates-plus}}

Build AI agents in minutes

Q&A RAG Chatbot with Cohere reranking
E-commerce shopping agent
Check order status, manage shopping carts and process returns.
Prior authorization navigator
Automate the prior authorization process for medical claims.
Trust Center RAG Chatbot
Read from a vector database, and instantly answer questions about your security policies.
Legal document processing agent
Process long and complex legal documents and generate legal research memorandum.
Legal RAG chatbot
Chatbot that provides answers based on user queries and legal documents.

Build AI agents in minutes for

{{industry_name}}

Clinical trial matchmaker
Match patients to relevant clinical trials based on EHR.
Prior authorization navigator
Automate the prior authorization process for medical claims.
Population health insights reporter
Combine healthcare sources and structure data for population health management.
Legal document processing agent
Process long and complex legal documents and generate legal research memorandum.
Legal contract review AI agent
Asses legal contracts and check for required classes, asses risk and generate report.
Legal RAG chatbot
Chatbot that provides answers based on user queries and legal documents.

Case study results overview (usually added at top of case study)

What we did:

1-click

This is some text inside of a div block.

28,000+

Separate vector databases managed per tenant.

100+

Real-world eval tests run before every release.