Vellum is coming to the AI Engineering World's Fair in SF. Come visit our booth and get a live demo!

Great (and not so great) use cases of Large Language Models

Despite high potential, LLMs are not a one-size-fits all solution. Choosing the right use case for LLMs is important

Written by
Reviewed by
No items found.

Large Language Models (LLMs) built by providers like OpenAI, Anthropic, Cohere, Google and now Meta have the potential to create magical user experiences to provide a competitive advantage. We’ve seen companies of all sizes starting to leverage this technology in their products — it’s no longer limited to “AI first” companies.

The applications are everywhere — Github Copilot has improved developer productivity significantly and tools like Jasper and Copy AI help create sales and marketing collateral in a fraction of the time. LLMs can also be used to streamline business processes and lower costs when used for classification and text extraction problems.

While the possibilities seem endless, there are also several use cases where a Large Language Model may not be the right technology. In this post, we share some great (and not so great) use cases of LLMs so you know how you can best use Generative AI in your product.

Great use cases

Generating content with specific instructions

LLMs are well suited to generate content with specific instructions, such as Notion AI, Github Copilot or Copy AI. There is usually no correct answer in this generated content and the key to differentiate from competitors is providing a UX that feels natural and intuitive.

Think carefully about how your user may interact with the AI portion of your product, how they can provide sufficient context to get high quality results, and how you will measure how much the user liked the generated content. The companies we’ve seen be successful here are constantly iterating on their prompts and measuring output quality. While iterating on your prompts, be sure to maintain version history and run back tests against historical requests to confirm that the new prompt won’t break any existing behavior!

Parsing unstructured data

We personally love this use case — LLMs are a new tool in your arsenal to convert the vast amounts of unstructured data that exists into a structured machine readable format for analysis or business processes. We’ve seen use cases for extracting JSON data from invoices, bank statements and government documents (saving countless hours in manual data entry!).

We recommend starting with a zero shot approach and switching to a few shot approach if token limits permit. If this doesn’t result in sufficiently high accuracy, then you should try fine-tuning.

Classification based on historical training data

Consider using an LLM if you have a business process like classifying emails or support tickets into a predefined category (currently done by humans) — you will save countless hours at a fraction of the cost.

Fine-tuning is the best approach to take here because as you collect more and more correct responses, you can create a pipeline to continuously improve quality, reduce costs and reduce latency. You should periodically re-run fine-tuning jobs as your dataset increases in size to improve performance and potentially decrease cost by switching to a cheaper model.

Not so great use cases

Making predictions using tabular data

From what we’ve seen so far, traditional ML models are better suited than LLMs in use cases where predictions need to be made against a large amount of tabular data. An example here would be the fraud detection algorithms used by large financial institutions on each credit card transaction. These algorithms take in a large amount of information (e.g., merchant details, purchase details, historical spending patterns, location) and make a fraud assessment.

For now, LLMs still have trouble creating predictions from primarily numerical data and we suggest using a model more suited to your use case.

Expecting truthful responses without good prompting or relevant context

LLMs may not always be truthful without good prompting or relevant context. Here’s an example response from an LLM that hasn’t been given enough context

If accuracy of generated content is important for your use case, we suggest good prompt engineering and providing sufficient context in the prompt. If you are looking for answers from a corpus of text (e.g., help center documentation or historical legal cases), you will likely need to perform a semantic search against the corpus and find relevant pieces of context to inject into the prompt. Building the infrastructure for performing this semantic search is a non trivial amount of engineering effort — we will cover best practices as part of a future content piece.

Conclusion

LLMs have enormous potential for increasing revenue, retention or decreasing costs, but they are not a one-size-fits-all solution. It's important to carefully consider the use case and ensure that LLMs are the right tool for the job.

At Vellum, we work with our customers to identify the highest impact use cases and provide the tools to rapidly deploy them in production while maintaining engineering best practices. We’re excited to learn more about your LLM use cases. Reach out for early access here.

ABOUT THE AUTHOR
Akash Sharma
Co-founder & CEO

Akash Sharma, CEO and co-founder at Vellum (YC W23) is enabling developers to easily start, develop and evaluate LLM powered apps. By talking to over 1,500 people at varying maturities of using LLMs in production, he has acquired a very unique understanding of the landscape, and is actively distilling his learnings with the broader LLM community. Before starting Vellum, Akash completed his undergrad at the University of California, Berkeley, then spent 5 years at McKinsey's Silicon Valley Office.

ABOUT THE reviewer

No items found.
lAST UPDATED
Feb 27, 2023
share post
Expert verified
Related Posts
Guides
October 21, 2025
15 min
AI transformation playbook
LLM basics
October 20, 2025
8 min
The Top Enterprise AI Automation Platforms (Guide)
LLM basics
October 10, 2025
7 min
The Best AI Workflow Builders for Automating Business Processes
LLM basics
October 7, 2025
8 min
The Complete Guide to No‑Code AI Workflow Automation Tools
All
October 6, 2025
6 min
OpenAI's Agent Builder Explained
Product Updates
October 1, 2025
7
Vellum Product Update | September
The Best AI Tips — Direct To Your Inbox

Latest AI news, tips, and techniques

Specific tips for Your AI use cases

No spam

Oops! Something went wrong while submitting the form.

Each issue is packed with valuable resources, tools, and insights that help us stay ahead in AI development. We've discovered strategies and frameworks that boosted our efficiency by 30%, making it a must-read for anyone in the field.

Marina Trajkovska
Head of Engineering

This is just a great newsletter. The content is so helpful, even when I’m busy I read them.

Jeremy Hicks
Solutions Architect

Experiment, Evaluate, Deploy, Repeat.

AI development doesn’t end once you've defined your system. Learn how Vellum helps you manage the entire AI development lifecycle.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Build AI agents in minutes with Vellum
Build agents that take on the busywork and free up hundreds of hours. No coding needed, just start creating.

General CTA component, Use {{general-cta}}

Build AI agents in minutes with Vellum
Build agents that take on the busywork and free up hundreds of hours. No coding needed, just start creating.

General CTA component  [For enterprise], Use {{general-cta-enterprise}}

The best AI agent platform for enterprises
Production-grade rigor in one platform: prompt builder, agent sandbox, and built-in evals and monitoring so your whole org can go AI native.

[Dynamic] Ebook CTA component using the Ebook CMS filtered by name of ebook.
Use {{ebook-cta}} and add a Ebook reference in the article

Thank you!
Your submission has been received!
Oops! Something went wrong while submitting the form.
Button Text

LLM leaderboard CTA component. Use {{llm-cta}}

Check our LLM leaderboard
Compare all open-source and proprietary model across different tasks like coding, math, reasoning and others.

Case study CTA component (ROI)

40% cost reduction on AI investment
Learn how Drata’s team uses Vellum and moves fast with AI initiatives, without sacrificing accuracy and security.

Case study CTA component (cutting eng overhead) = {{coursemojo-cta}}

6+ months on engineering time saved
Learn how CourseMojo uses Vellum to enable their domain experts to collaborate on AI initiatives, reaching 10x of business growth without expanding the engineering team.

Case study CTA component (Time to value) = {{time-cta}}

100x faster time to deployment for AI agents
See how RelyHealth uses Vellum to deliver hundreds of custom healthcare agents with the speed customers expect and the reliability healthcare demands.

[Dynamic] Guide CTA component using Blog Post CMS, filtering on Guides’ names

100x faster time to deployment for AI agents
See how RelyHealth uses Vellum to deliver hundreds of custom healthcare agents with the speed customers expect and the reliability healthcare demands.
New CTA
Sorts the trigger and email categories

Dynamic template box for healthcare, Use {{healthcare}}

Start with some of these healthcare examples

Clinical trial matchmaker
Match patients to relevant clinical trials based on EHR.
Population health insights reporter
Combine healthcare sources and structure data for population health management.

Dynamic template box for insurance, Use {{insurance}}

Start with some of these insurance examples

Insurance claims automation agent
Collect and analyze claim information, assess risk and verify policy details.
Agent that summarizes lengthy reports (PDF -> Summary)
Summarize all kinds of PDFs into easily digestible summaries.
AI agent for claims review
Review healthcare claims, detect anomalies and benchmark pricing.

Dynamic template box for eCommerce, Use {{ecommerce}}

Start with some of these eCommerce examples

E-commerce shopping agent
Check order status, manage shopping carts and process returns.

Dynamic template box for Marketing, Use {{marketing}}

Start with some of these marketing examples

Competitor research agent
Scrape relevant case studies from competitors and extract ICP details.
ReAct agent for web search and page scraping
Gather information from the internet and provide responses with embedded citations.

Dynamic template box for Sales, Use {{sales}}

Start with some of these sales examples

Research agent for sales demos
Company research based on Linkedin and public data as a prep for sales demo.

Dynamic template box for Legal, Use {{legal}}

Start with some of these legal examples

Legal contract review AI agent
Asses legal contracts and check for required classes, asses risk and generate report.
PDF Data Extraction to CSV
Extract unstructured data (PDF) into a structured format (CSV).

Dynamic template box for Supply Chain/Logistics, Use {{supply}}

Start with some of these supply chain examples

Risk assessment agent for supply chain operations
Comprehensive risk assessment for suppliers based on various data inputs.

Dynamic template box for Edtech, Use {{edtech}}

Start with some of these edtech examples

Turn LinkedIn Posts into Articles and Push to Notion
Convert your best Linkedin posts into long form content.

Dynamic template box for Compliance, Use {{compliance}}

Start with some of these compliance examples

No items found.

Dynamic template box for Customer Support, Use {{customer}}

Start with some of these customer support examples

Q&A RAG Chatbot with Cohere reranking
Trust Center RAG Chatbot
Read from a vector database, and instantly answer questions about your security policies.

Template box, 2 random templates, Use {{templates}}

Start with some of these agents

Q&A RAG Chatbot with Cohere reranking
Legal contract review AI agent
Asses legal contracts and check for required classes, asses risk and generate report.

Template box, 6 random templates, Use {{templates-plus}}

Build AI agents in minutes

E-commerce shopping agent
Check order status, manage shopping carts and process returns.
ReAct agent for web search and page scraping
Gather information from the internet and provide responses with embedded citations.
Prior authorization navigator
Automate the prior authorization process for medical claims.
Insurance claims automation agent
Collect and analyze claim information, assess risk and verify policy details.
LinkedIn Content Planning Agent
Create a 30-day Linkedin content plan based on your goals and target audience.
AI legal research agent
Comprehensive legal research memo based on research question, jurisdiction and date range.

Build AI agents in minutes for

{{industry_name}}

Clinical trial matchmaker
Match patients to relevant clinical trials based on EHR.
Prior authorization navigator
Automate the prior authorization process for medical claims.
Population health insights reporter
Combine healthcare sources and structure data for population health management.
Legal document processing agent
Process long and complex legal documents and generate legal research memorandum.
Legal contract review AI agent
Asses legal contracts and check for required classes, asses risk and generate report.
Legal RAG chatbot
Chatbot that provides answers based on user queries and legal documents.

Case study results overview (usually added at top of case study)

What we did:

1-click

This is some text inside of a div block.

28,000+

Separate vector databases managed per tenant.

100+

Real-world eval tests run before every release.